
User manual for MINLP BB ∗

Sven Leyffer†

Argonne National Laboratory

April 1998
Revised, March 1999 and July 2003

Abstract

A software package for the solution of Mixed Integer Nonlinear Pro-
gramming (MINLP) problems is described. The package implements a
branch-and-bound solver with depth-first search and maximal fractional
branching.

Key words: Mixed Integer Nonlinear Programming, branch-and-bound.

1 Introduction

The software package MINLP BB described in this note solves MINLP problems by
branch-and-bound. These are Nonlinear Programming (NLP) problems in which
some of the variables are restricted to take integer values. The nonlinear part of
the problem is specified in the same way as for the NLP solver filterSQP [2].

The solver guarantees to find global solutions, if the problem is convex.
MINLP BB is also effective to solve non-convex MINLP problems. Even though no
guarantee can be given that a global solution is found in this case, the solver is
more robust than outer approximation or Benders Decomposition which usually
cut away large parts of the feasible region.

MINLP BB can also be used to solve problems with discrete variables (e.g.
z ∈ {0.2, 7.4, 18.7}). In this case the problem can be reformulated by replacing z
by z = 0.2 y1 + 7.4 y2 + 18.7 y3 and y1 + y2 + y3 = 1 where yi ∈ {0, 1}. This is
in fact an example of a Special Ordered Set of type 1 (SOS1), e.g. [3].

∗This work was supported by EPSRC grant number GR/K51204.
†leyffer@mcs.anl.gov

1



2 Sven Leyffer

2 The Algorithm

The package implements a branch-and-bound scheme (e.g. [1]) using a depth-first-
search. The resulting NLP relaxations are solved using filterSQP. The user can
influence the branching decision by supplying priorities for the integer variables.
By default, the solver branches on the variable with the highest priority first. If
there is a tie, then the variable with the largest fractional part is selected for
branching.

3 System Requirements and Implementation

The software package requires a FORTRAN 77 compiler. It comprises a suite of
MINLP subroutines:

MINLPdriver.f A sample driver for the MINLP solver.
minlpbb.f The main MINLP BB routine.
minlpbbaux.f Auxiliary routines used in minlpbb.f.
BBaux.f Auxiliary routines used for MINLP and MIQP.
MINLPuser.f The user supplied problem functions.

In addition the user requires an NLP solver (filterSQP) consisting of:
filter.f The main SQP filter routine.

filteraux.f Auxiliary routines used in filter.f.
QPsolved.f The interface to the QP solver, dense storage.
QPsolves.f The interface to the QP solver, sparse storage.
scaling.f Routines that scale the problem.
bqpd.f The main QP solver routine.
auxil.f Some auxiliary routines for bqpd.
denseL.f Dense linear algebra package.
sparseL.f Sparse linear algebra package.
util.f Some linear algebra utilities.
sparseA.f Sparse matrix storage/handling OR
denseA.f Dense matrix storage/handling.

A makefile for UNIX systems is supplied with the distribution version. This
makefile compiles and links the small MINLP problem in [2]. Interfaces to CUTE

and AMPL can be made available upon request.

4 Description of the Interface

The interface of the MINLP solver has the following form. Here REAL is Fortran
double precision by default but can be changed to standard single precision
using teh supplied tools.



User manual for MINLP BB 3

subroutine minlpsolver(nivar,n,m,kmax,nstackmax,mlp,bl,bu,fstar,

. rho,x,s,lam,ivar,priority,nSOS1,tSOS1,pSOS1,

. iSOS1,rSOS1,SOS1priority,c,cstype,a,la,maxa,

. iwork,liwork,work,lwork,user,iuser,iter,

. iprint,nout,ifail,max_NLP)

4.1 Definition of Parameters

A detailed description of the parameters follows below (the parameters preceded
by a * must be set on entry to minlpsolver.

* nivar number of integer variables (INTEGER)
* n total number of variables (INTEGER)
* m number of constraints (linear and nonlinear, excluding simple bounds)

(INTEGER)
* kmax maximum size of null-space (≤ n) (INTEGER)
* nstackmax maximum size of the stack, storing information during the tree-search

(INTEGER)
* mlp maximum level of degeneracy in QP solver (INTEGER)
* bl bl(n+m) vector of lower bounds (REAL)
* bu bu(n+m) vector of upper bounds (REAL)

fstar optimum objective function value (REAL)
* rho initial trust-region radius (REAL)

x x(n) optimal integer feasible solution (i.f.s.); or if (ifail=6) the first i.f.s.
obtained (REAL)

s s(n+m) scale factors for variable/constraint scaling (REAL)
lam lam(n+m) Lagrange multipliers of simple bounds and general constraints

at solution (REAL)
* ivar ivar(nivar) vector of indices of the integer variables (INTEGER)
* priority priority(n) is the priority of the integer variables; priority(ivar(i))

is the priority of variable x(ivar(i)); a higher value implies a higher
priority (INTEGER)

* nSOS1 number of variables that are elements of a SOS1 set (INTEGER)
* tSOS1 number of SOS1 sets (INTEGER)
* pSOS1 pSOS1(tSOS1+1) are pointers to start of each SOS1 (INTEGER)
* iSOS1 iSOS1(nSOS1)index of each integer variable in SOS1 (INTEGER). Indices

of the i-th SOS1 are stored in iSOS1(pSOS1(i):pSOS1(i+1))

* rSOS1 rSOS1(nSOS1) reference row of SOS1, storage as for iSOS1 (REAL)
* SOS1priority SOS1priority(tSOS1) priorities of SOS1 sets (INTEGER)



4 Sven Leyffer

c c(m) vector that stores the final values of the general constraints
(REAL)

* cstype cstype(m) indicates whether the constraint is linear or nonlinear,
i.e. cstype(j) = ’L’ for linear and cstype(j) = ’N’ for nonlin-
ear constraint number j (CHARACTER*1)

a Jacobian storage (see filterSQP) (REAL)
la integer information related to Jacobian storage (see filterSQP)

(INTEGER)
* maxa maximum number of entries allowed in Jacobian matrix a

(INTEGER)
iwork iwork(liwork) integer workspace for the MINLP and NLP solvers

(INTEGER)
* liwork length of iwork (INTEGER); at least nivar + 2*nstackmax + 11

locations plus storage required for the NLP solver.
work work(lwork) real workspace for the MINLP and NLP solvers

(REAL)
* lwork length of lwork (INTEGER); at least

n+m + nstackmax*(n+m) + nstackmax*n + n

+ 2*nstackmax*nivar + 2*nstackmax + 2*nivar + 3

locations plus storage required for the NLP solver.
iter number of NLP problems solved (INTEGER)

* iprint print flag (INTEGER)
0 : no printed output;
1 : only result is printed;
2 : result plus intermediary steps are printed;
3 : as 2 but NLP is called with iprint = 1;
4 : as 2 but NLP is called with iprint = 2

* nout number of output channel (INTEGER)
ifail failure flag (INTEGER)

0 : optimal i.f.s. found
1 : infeasible root problem
2 : integer infeasible
3 : stack overflow some i.f.s. obtained
4 : stack overflow, no i.f.s. obtained
5 : SQP termination with rho < eps

6 : SQP termination with iter > max iter

7 : crash in user supplied routines
8 : unexpected ifail from QP solver
9 : not enough REAL workspace or parameter error
10 : not enough INTEGR workspace or parameter error

* max NLP maximum number of NLP iterations per node (INTEGER)



User manual for MINLP BB 5

4.2 Common Statements

A number of named common statement are used to pass information into bqpd

and for less important constants. These common statements take the following
form

real eps, infty

common /cTolInf/ eps, infty

The common /cTolInf/ defines the accuracy, eps, to which the problem is
solved and a suitably large number to represent ∞ in infty.

4.3 User-defined Subroutines

The user is also responsible for providing subroutines which compute function,
gradient and Hessian information. This is explained in detail in [2].

References

[1] Fletcher, R. and Leyffer, S. Numerical experience with lower bounds for MIQP
branch–and–bound. SIAM Journal on Optimization, 8(2):604–616, 1998.

[2] Fletcher, R. and Leyffer, S. User manual for filterSQP. Numerical Analysis
Report NA/181, Dundee University, April 1998.

[3] H.P. Williams. Model Solving in Mathematical Programming. John Wiley &
Sons Ltd., Chichester, 1993.


